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My 2022

▸Learned AI through Jeremy Howard’s fast.ai 

▸BERT can take tests

▸𝜃 distribution vs artificial ‘intelligence’?
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NCME 2023: 
Field-testing items using AI

▸Create 1,000 RoBERTa models with varied 𝜃: Random proportion 𝑈(0,1) 
of the 50,265 token embedding weights set to 0 

▸Used AI item responses to calibrate new MCQ items 
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NCME 2024:
Field-testing items using AI (v2)

▸Assigned 𝜃 to 61 DeBERTa-v3-large models, and fine-tuned it to output 
2PL IRT model probabilities 

▸Generated item response data to do:
• item calibration with anchors, distractor analysis, dimensionality analysis, 

scoring, item proportion correct, item discrimination
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Maeda, H. (2024). Field-Testing Multiple-Choice Questions With AI Examinees: English 
Grammar Items. Educational and Psychological Measurement, 85(2), 221-244.
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Bottleneck for field-testing 
real items with AI?
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Bottleneck for field-testing 
real items with AI?

DIF
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Finding Words Associated with DIF 
Predicting DIF using LLMs and Explainable AI

Hotaka Maeda - Smarter Balanced
Yikai (EK) Lu - University of Notre Dame 
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DIF Analysis

▸Differential item functioning (DIF) – attempt to find biased items

1. Psychometricians: identify correct response probability that depend on 
demographics, given examinee ability 

2. Item content developer/SME: identify qualitative cause of bias
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My Vision
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Purpose

1. Predict DIF from the item text by training (fine-tune) an encoder 
transformer language model

2. Then, use “explainable AI” (XAI) methods to identify words associated 
with DIF

▸Impact 
• Help review traditional DIF results

• Avoid sample size issue

• Provide immediate item writing/revision feedback (3 years in advance for SB)

• Understand how DIF manifests qualitatively
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METHODS
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Item Data

▸42,180 English language arts & math summative state assessment items 

▸Grades 3 to 11

▸Variety of item types

▸Field tested (calibration, DIF)

▸80% training, 10% evaluation, 10% testing data
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DIF Data

▸Gender, race/ethnicity, SES, English language learner, disability

▸Binary: Mantel-Haenszel delta difference (MH) 
• ≤ -1 favors reference group

• ≥ 1 favors focal group

▸Polytomous: Standardized mean difference effect size (ES)
• ≤ -0.17 favors reference group

• ≥ 0.17 favors focal group

▸ES/0.17 ≈ MH

▸N ≥ 100 examinees per group per item (usually overall N >1500)
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Gender DIF Statistic Histogram
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3.3% Favor 
Females

2.8% Favor 
Males
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Continuous DIF Prediction Method
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Item id Item text DIF 

1
What inference can 
be made about the 
narrator’s feelings 

toward….. 
-0.6

2 … …

Predict DIF from Item Text

Mean squared error loss

i = items
N = number of items
Y = DIF

MSE =
∑( 𝑌𝑖 − 𝑌𝑖)2 

𝑁
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3 Category Prediction Method
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Item id Item text DIF DIF SE
Favor

Reference
Group

No DIF
Favor 
Focal
Group

1
What inference can 
be made about the 
narrator’s feelings 

toward….. 
-0.6 0.5 .2 .8 .001

2 … … … … … …

3 Probabilities found using DIF and SE
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3 Category Prediction Method
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Item id Item text
Favor

Reference
Group

No DIF
Favor 
Focal
Group

1
What inference can 
be made about the 
narrator’s feelings 

toward….. 
.2 .8 .001

2 … … … …

Predict 3 Probabilities 
from item text

Cross entropy loss

i = items
g = 3 groups
N = number of items

𝐶𝐸𝐿 =
− ∑𝑖 ∑𝑔 𝑃𝑖𝑔 log 𝑃𝑖𝑔 

𝑁
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DIF Modeling: Prediction

▸Fine-tune DeBERTa V3-large transformer encoder LLM (focal/reference 
group pairs separately)
• Continuous model: From item text, predict DIF value, as a continuous variable

• Category model: From item text, predict 3 DIF probabilities
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DIF Modeling: XAI with SHAP

▸Association of each word with predicted DIF value (“word attributions”)

▸Continuous model returns 1 attribution per token

▸Categorical model returns 3 attributions per token
• attribution = ifelse(a_Ref > 0, yes = -1*a_Ref, no = 0) +

    ifelse(a_Foc > 0,  yes = a_Foc, no = 0)
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RESULTS
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Based on testing data
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Example Item without DIF
Continuous Model
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Favors Female Students

Favors Male Students

Continuous 
Model
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Example Item without DIF
Continuous vs Categorical Model
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Favors Female Students

Favors Male Students

Continuous 
Model

3 Category 
Model
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Female/Male Group Models

Model R2
Attribution 

Kurtosis 
Correlation: 

Attribution & DIF

Categorical .32 515 .20

Continuous .33 90 .09
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Attribution Histogram Example
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Categorical Model Summary
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Focal/Reference Group Prediction R2
Attribution 
Reliability

Female/Male .32 .75
Asian/White .20 .75
Black/White .11 .68
Hispanic/White .16 .70
Native/White .04 .21
Lower SES/Non-LSES .12 .70
Students w/Disabilities/Non-SWD .11 .61
English learner/Non-EL .08 .67

Fine-tuned each model twice with different seed, averaged the output
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Example Item 
 - Favors Asian Students
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Observed DIF = 1.1
Predicted Favoring:
   Asian p = .30
   White p = .02
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Example Item 
 - Favors Students without Disabilities
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Observed DIF = -1.8
Predicted Favoring:
  w/ Disabilities p = .03
  w/o Disabilities p = .39
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Top Words Associated with DIF
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Foc/Ref Group Favors Focal Favors Reference

Female/Male
narrator, message, text, reader, 
summarize, relationship

growth, decay, equal, option, 
rounded, number

Asian/White
spelling, spelled, factor, capitalization, 
multiplication, punctuated

when, read, two, an, mr, click, to, 
sentence

Black/White 
div, multiplying, quotient, 
multiplication, equation, divide

grams, aaron, equal, parts, an, 
enter

Hispanic/White
enter, div, equation, quotient, 
rational, multiplication

rounded, punctuated, shade, 
phrases, parts, growth

Low SES/Non-LSES box, irrational, select
equal, rounded, measure, degrees, 
word, answer

Students with 
Disabilities/Non-SWD

div, size, unknown, equation, makes, 
true

directions, argumentative, farm, 
student, performance, club

English Learners/
Non-EL

from, equations
round, scored, task, mean, read, 
performance
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Discussions

▸Most detected DIF seemed to be construct-relevant 

▸Applications: 
• 1) During item writing

• 2) During traditional DIF item review 

• 3) When sample size requirements cannot be met for traditional DIF analyses

▸Limitations
• Correlation, not causation (word replacement ≠ DIF elimination)

▸AI can be used to fight bias
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Preprint Paper

Finding Words Associated with DIF

Hotaka Maeda
Yikai (EK) Lu
hotaka.maeda@smarterbalanced.org

https://arxiv.org/abs/2502.07017
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